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The extinction concept is extended for very thin non-ideal crystals. It is shown

that for a large gradient, the integrated reflected intensity exhibits a prominent

extinction minimum. This anomaly is an interbranch effect, occurring for crystals

with thicknesses of the order of the interbranch extinction length. Different

possibilities for applying this newly developed extinction theory to X-ray

integrated wave topography are discussed.

1. Introduction

As is well known, the dynamical interchange of the energy of

X-rays diffracted in a thick perfect crystal may lead to a

decrease in intensity of the primary beam. In the transmitted

diffraction this effect, called the primary extinction, is asso-

ciated with the divergence problem of integrated reflected

intensities. This problem is completely removed due to

extinction of the incident radiation (Authier, 2005). However,

the primary extinction effect will disappear for X-rays scat-

tered by a strongly deformed region, where the effective

misorientation exceeds the perfect crystal range � D.

In this paper we will present the theory of a new extinction

phenomena, which we will refer to as anomalous extinction.

This phenomenon also occurs in transmission geometry when

the crystal thickness is considerably less than the X-ray

extinction length �g for an ideal crystal. It should be noted that

the new X-ray diffraction methods used to study materials

in small dimensions (such as coherent diffraction, micro-

diffraction, X-ray diffraction line-profile modeling etc.) show

that such small crystals may be found in states of very high

stress (Robinson & Vartanyants, 2001; Tanuma et al., 2007;

Scardi, 2004). In this connection it is assumed that the crystals

are also strongly deformed. For strong lattice distortions we

will assume that the strain field is specified by the strain

gradient, which is considerably greater than 1=�2
g . This

condition is equivalent to the deformation of the lattice over

the unit distance being much greater than a rotation of the

order of the width of the rocking curve over a distance equal

to the Pendellösung distance �g. Moreover, when this condi-

tion is satisfied the eikonal approximation of the dynamical

theory is no longer valid (Authier & Balibar, 1970). At the

same time, despite the large value of the strain gradient, the

displacement u may be small in comparison to the lattice

spacing.

It is worth noting that in strongly deformed crystals the

redistribution of energy between transmitted and diffracted

waves may be considerably affected by interbranch scattering.

As was shown by Shevchenko (2007), the prominent features

seen in the X-ray rocking curve from highly distorted crystals

are due to interbranch scattering. It is natural to suggest that

these peculiarities are related to the appreciable extinction of

X-rays. This point and the mechanism of anomalous extinction

will be considered in detail in the next section. Moreover, we

will also discuss the application of the extinction effect to

X-ray integrated wave topography.

2. Results

Takagi’s equations are commonly used to describe X-ray

dynamical diffraction in deformed crystals when long-range

strain fields are distributed in the crystal. For any form of

displacement u, they can only be analytically solved for a weak

deformation (Penning & Polder, 1961; Kato, 1963). This

solution specifies X-ray into-a-branch scattering and corre-

sponds to the eikonal approximation of dynamical theory.

With a constant strain gradient, the analytical solution of

Takagi’s equations can be expressed in terms of confluent

hypergeometric functions (Litzman & Janacek, 1974;

Chukhovski, 1974; Katagawa & Kato, 1974). However, an

asymptote of this solution for strong lattice distortions does

not describe the X-ray multiple scattering, which occurs in a

small vicinity �zD of the point z0, where the Bragg condition

is locally satisfied (Shevchenko, 2009). Thus, the point z0 is

characteristic of the solution of the diffraction problem. It can

be considered to be the real part of the complex turning point

(Chukhovski, 1980). To find a solution near the turning point it

is necessary to rearrange a given equation to one which would

only describe the interchange of the eikonal modes. Unfor-

tunately, due to the complexity of the turning point, the

standard method of rearrangement of the differential equa-

tions (as described, for example, in Nayfeh, 1993) is not

applicable to the X-ray diffraction problem. With this in mind,

an original approach, which is similar to the Lagrange method,

was developed (Shevchenko, 2005). Assuming a one-

dimensional displacement u zð Þ, which depends on the depth z

in the crystal, Takagi’s equations were reduced to a set of

differential equations describing the interbranch contribution



near the point z0. For the transmitted wave, these equations

have the form
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Here pðzÞ ¼ ½1þ �2ðzÞ�1=2, where � zð Þ = ! + ðg du zð Þ=dzÞ

� �g=ð2�Þ, ! ¼ s�g=ð2�Þ and s is the deviation of the incident

wave from Bragg’s law. The values A1;2
0 ðzÞ are amplitudes of

the transmitted waves within the eikonal representation,

which correspond to the different branches of the local

dispersion surface. They are related to the amplitude of the

plane-wave expansion D0ðzÞ by
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where �1;2
0 ðzÞ are the ‘eikonal solutions’ for the transmitted

wave of Takagi’s equation. Thus, equation (2) introduces the

‘eikonal representation’ of dynamical theory, which only

describes X-ray interbranch scattering. Equations (1) and (2)

are expressed more fully in Shevchenko (2009, x2), where the

analytical expressions of the eikonal solutions are also given.

Clearly, solving equation (1) is a difficult problem.

However, equation (1) can be solved approximately for

homogeneous bending (Shevchenko, 2007). From this result,

the amplitudes D0;g of the transmitted and diffracted waves

can be written in the form

D0 zð Þ ¼ exp i
Rz
0
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� �
; ð3Þ
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1=2. Here �0 ¼ 2�g=" is the X-ray interbranch

length, where " ¼ �g�2
g=ð2�

2RÞ. It is also assumed that the

displacement uðzÞ ¼ �z2=ð2RÞ, where � and R are constants

describing the deformation and the radius of curvature,

respectively. The interbranch jump of the tie point is taken

into account using the step function �ðz0 � zÞ, which equals 1

and�1 if z0 � z> 0 and z0 � z< 0, respectively. As seen from

equation (3), in strongly bent crystals multiple scattering only

contributes to the D0ðzÞ phase, while the amplitude changes

caused by this process are disregarded due to being negligible.

It should be noted that in equation (4) the interbranch

contribution to DgðzÞ is integrated over the crystal thickness.

Nevertheless, interbranch scattering is able to produce the

prominent features of the diffracted intensity even after

integrating over the crystal thickness.

It is necessary to point out that equations (3) and (4) are

obtained using the assumption that any attenuation of the

incident wave by diffraction through the crystal is neglected.

In fact, this means that all the energy of the incident wave is

transferred from the upper dispersion branch to the lower

dispersion branch, with z0 at one point. Meanwhile, the

interbranch redistribution of the energy will occur within a

certain vicinity of the point z0. Clearly this correction is not

critical for the prediction of phase modulation effects for the

diffracted intensity because they are caused by sharp changes

in the phase of the X-ray wavefields, originated in the inter-

branch jump of the tie point. However, due to an accumula-

tion of systematic errors, this correction may be important for

the calculation of the integrated reflected intensity. With this

in mind we modified the expression for the amplitude DgðzÞ as

follows, assuming for simplicity that the vector diffraction g is

parallel to the displacement u.
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In equation (5) we separate the contributions from different

processes. The first term only corresponds to the kinematical

diffraction, whereas the second term in equation (5) only

specifies the multiple scattering contribution. Since the

multiple scattering is responsible for the spatial distribution of

the energy in the vicinity of point z0, the second term is

multiplied by the factor expf� z� z0

�� ��=�0g. In doing so, we

take into consideration empirically that redistribution of the

energy is effective within the range �zD, of the order of the

X-ray interbranch extinction length �0, specifying the range

of the dynamical diffraction in strongly bent crystals. It also

follows from this that the interbranch contribution to the

X-ray wavefields is appreciable within the vicinity of �zD.

Beyond this vicinity, due to the exponential factor, the

amplitude of the diffracted wave will rapidly tend towards the

kinematical limit.

Equation (5), as well as equation (4), describes the inter-

branch ‘fine’ structure effects which occur for crystals with

thicknesses of t ’ �0. Considering the amplitude Dg as a

function of the deviation ! results in splitting of the diffracted

intensity Igð!Þ, plotted in Figs. 1(a) and (b). These curves,

calculated using equation (5), correspond to (a) a deformation

" ¼ 100 and a thickness T ¼ 1 (in units of t=�0) and (b) a

deformation " ¼ 200 and a thickness T ¼ 2. These model

parameters can be applied to the conventional case of

X-ray diffraction, specified by the values �g ¼ 10�5 m,

g ¼ 2�� 1010 m�1. In this case, the thickness t corresponding

to the model parameters is 200 nm, such that the X-ray

interbranch extinction length �0 = 200 and 100 nm for

deformations " = 100 and 200, respectively. Moreover, one can

estimate that the appropriate radius of curvature R is of the

order of 10�2 m and, consequently, the displacement u does

not exceed a few %. Thus, displacement u is a small value,
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while the strain gradient proportional to the value g=R is

considerably greater than 1=�2
g.

It can be established by analyzing the splitting of Bragg’s

peak that the diffracted intensity increases by varying the

deviation ! from !M ¼ �2�t=�0 to 0, such that it is minimal

when ! ¼ !M and maximal when ! ¼ 0. [Indeed, when

! ¼ !M, the period of oscillations of the integrands in equa-

tions (4) and (5) is less than for ! ¼ 0. Then from equations

(4) and (5) it can be deduced that the diffracted intensity has a

minimum at !M and a maximum at ! ¼ 0 by integrating over

z]. It should be noted that, due to the complementary of the

diffracted and transmitted intensities, the transmitted intensity

will decrease when the deviation varies from !M to 0.

Obviously, this effect can be considered as an extinction of

X-rays, which occurs in the case of X-ray diffraction by a

strongly deformed crystal.

Since the interval of variation of the deviation !, corre-

sponding to the extinction effect, coincides with the range of

activation of the interbranch scattering, it is known as the

interbranch effect. Clearly such an effect will be most

prominent for the diffracted intensity. In this case, the signif-

icant extinction changes of the diffracted intensity are due to

the interbranch phase modulation of the X-ray wavefields. The

period of modulation may be estimated as �0, which is of the

order of the crystal thickness. Therefore, the integration of the

interbranch contribution over the crystal thickness leads to

pronounced splitting of Bragg’s peak, which is accompanied

by an increase in the diffracted intensity within the deviation

interval from !M to 0.

The specific character of X-ray extinction in strongly

deformed crystals will be referred to as anomalous extinction.

We also refer to anomalous notation as being the extinction

property caused by strong lattice distortions. This property is

actually an unusual feature of X-ray extinction. Strong

deformations are well known to suppress the primary and

secondary extinction effects. On the other hand, the anom-

alous extinction increases with strengthening deformation.

Indeed, considering the position of the extinction minimum in

Figs. 1(a) and (b), the range of activation of this effect can be

seen to increase with increasing deformation. An increasing

gradient leads to an appropriate increase in the value of !M.

For example, for " = 200 this value doubles compared with the

value corresponding to " = 100.

Thus we can deduce that the mechanism of extinction of

X-rays is determined mainly by the degree of perfection of the

crystal. In an ideal or a slightly deformed crystal the X-ray

extinction is caused by into-the-branch scattering, which

produces the amplitude modulation of the X-ray wavefields.

On the other hand, in a highly deformed crystal X-ray

extinction is due to interbranch scattering, which produces the

phase modulation of the X-ray wavefields. It is important to

note that the anomalous extinction effect turns out to be

prominent in the integrated reflected intensity. By numerically

integrating equation (5) over the deviation !, the integrated

intensity was calculated for model deformation " ¼ 100 and

" ¼ 200. Moreover, for convenience we introduce the

normalized intensity Iint
g as the ratio of the integrated reflected

intensity and the kinematical intensity. Obviously, the

normalized intensity Iint
g can also be considered as the

correction for anomalous extinction. Figs. 2(a) and (b) show

plots versus crystal thickness T (in units t=�0). The intensity

shows the pronounced extinction minimum which corresponds

to a crystal thickness of the order of the interbranch extinction

length �0. With increasing thickness, the intensity tends

towards the kinematical limit, exhibiting more-or-less periodic

oscillations. Their period approximately corresponds to a

thickness change of the order of �0. They originate in the

interbranch oscillations of the diffracted intensity as a function

of crystal thickness, as described in Shevchenko (2007).

It should also be noted that the semi-empirical character of

equation (5) does not influence the appearance of the

extinction minimum in the integrated diffracted intensity. In

fact, this minimum is due to the interbranch splitting of the

X-ray rocking curve. In equations (4) and (5) the splitting

effect is described by the term specifying the interbranch jump

of the tie point. This term is calculated analytically by

summing up the phase of the multiply scattered waves in the

bent crystal. On the other hand, the exponential factor,
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Figure 1
The X-ray rocking curves for the deformations (a) " ¼ 100 and (b) " ¼ 200, such that !M ¼ �2� and �4�, respectively.



introduced empirically in equation (5), determines the steep-

ness of the tendency of the integrated intensity to the kine-

matical limit. Owing to this factor, the intensity will rapidly

tend to the limit with increasing thickness of the crystal.

As can be seen in Figs. 2(a) and (b), the intensity of the

extinction minimum increases with an increase in the gradient.

For deformation " ¼ 100, the minimal value of the intensity is

approximately 0.86, whereas it is 0.9 for " ¼ 200. This fact is

specific to the normalized integrated intensity. It is due to the

broadening and eroding of Bragg’s peak caused by the lattice

distortion. The integrated intensity, which is the area lying

beneath the X-ray rocking curve, increases with increasing

deformation. Furthermore, the relation of the square of this

area to that of the area of the interbranch losses may increase

in this case. As a result, the normalized integrated intensity

also increases.

It can be seen that the correction for anomalous extinction

has an appreciable value. As follows from the results

presented, the anomalous extinction is of the order of 10% in

relation to the kinematical limit. At the same time, the

correction for primary extinction, given in James (1948),

Chapter VI, p. 272, is of the order of 0.01–0.1% for the model

parameters �g ’ 10�5 m, g ’ 1010 m�1 and t = 10�7 m. An

increase in the extinction correction by two or three orders of

magnitude allows us to use the anomalous extinction effect in

X-ray studies of very thin crystals. Obviously, applying the

methods of high-resolution X-ray diffraction would be

preferable.

3. Discussion

It is clear from Figs. 2(a) and (b) that the X-ray integrated

wave topography is one of the most likely uses of the anom-

alous extinction phenomenon. Indeed, the non-linear depen-

dence of the integrated intensity versus crystal thickness,

attributed to the pronounced extinction minimum, implies an

appreciable extinction contrast from defects in very thin and

strongly deformed crystals. It should be remembered that

from the viewpoint of the ordinary extinction effect the lower

limit for the thickness of the crystals for defects to give clear

contrast in X-ray topographs has been estimated as 1=3 to 1=6

of the Pendellösung length (Penning & Goemans, 1968). A

more accurate criterion was obtained in Tanner (1972). It

follows from this criterion that in low-order reflections the

minimum thickness at which good contrast is observed is

about 0:4�g. This value falls to � 0:15�g for higher-order

reflections.

Following on from the considerations presented, the

minimum thickness for the formulation of the anomalous

extinction contrast image is of the order of the interbranch

extinction length �0. It should be noted that the value of �0 is

considerably less than the minimum thickness for visibility of

defects as predicted by conventional theory. However, to

increase the appreciable width of the defect image it is

necessary to suggest that the value of �g is sufficiently large.

Bearing this in mind we pay attention to protein crystals,

where �g may reach a magnitude 10�3 m. Thus, these crystals

can also be considered to be a ‘magnified’ model to test the

fundamentals of a given theory. Relating to this it is worth

mentioning the paper by Shevchenko (2009), which deals with

the X-ray study of the anomalous decrease of the dislocation

image in protein crystals. This fact was reported in the work by

Koizumi et al. (2005), in which the image width of the screw

dislocation related to the conventional theory (Authier, 1967)

was greater than that measured by two orders of magnitude.

Clearly, such a considerable effect cannot be interpreted as a

compression of the direct dislocation image caused by the

orientation contrast contribution. [This effect was described in

Dudley (1999), and implies the compression of the width of

the image several times, i.e. by less than one order of magni-

tude.] At the same time the anomalous width of the disloca-

tion image can be easily explained by considering the
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Figure 2
The normalized integrated intensity for (a) " ¼ 100 and (b) " ¼ 200 versus crystal thickness T (units t=�0).



interbranch scattering in a small crystal matrix (mosaic block)

which is assumed to be strongly deformed. Since the anom-

alous extinction is the interbranch scattering effect, which is

specified by the nonlinear dependence of the integrated

intensity versus thickness, it can be suggested that this

phenomenon is mainly responsible for the anomalous image

width in protein crystals.

Besides protein crystals, another example of a possible use

of the anomalous extinction effect is the X-ray topography of

crystals using quasi-forbidden reflections. These studies are

also characterized by a large extinction length �g that makes it

practically impossible to obtain direct images of defects in

crystals of a reasonable thickness. However, we can predict the

observation of such images for deformed crystals by taking

into account the X-ray anomalous extinction. In the case of

strong and extended lattice distortions, anomalous extinction

may lead to the formation of the direct image even for a

crystal thickness which is considerably less than the conven-

tional extinction length �g. It should be noted that the problem

of observing direct images for diamond crystals of different

perfection using forbidden reflections was considered in

Shyryaev et al. (2008). It was found that the X-ray contrast

appears due to the presence of platelet-type defects, such that

the topographs show individual dislocations. Analyzing these

results, it is relevant to note that the long-range strain fields

may be caused by impurities in the crystals. This conclusion

was made in the work by Ikeno et al. (1968) devoted to the X-

ray topographical studies of NaCl crystals grown from an

aqueous solution containing Mn ions. With this in mind, we

can suggest that the X-ray contrast from the diamond crystal

may be due to the anomalous extinction of X-rays. In this case,

the strong deformations can be caused by platelet impurities.

Thus, the problem of X-ray extinction contrast is worthy of

attention even in the case of a crystal thickness which is

considerably less than the conventional length �g. When the

crystal is highly deformed the extinction contrast is formed

due to X-ray interbranch scattering, which leads to the

prominent extinction minimum in the X-ray integrated

reflected intensity.
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